Universo a gran escala, su evolución (II): Grandes Estructuras.

 

Entre las preguntas que nos hacemos del Universo, los ¿por qué?: de cómo se expande, o porque es homogéneo e isotrópico como vimos en la Primera Parte, su historia, que haya vida, su composición físico-química o cómo se expande; una de ellas es su estructura a gran escala, entendiendo que la estructura a gran escala está entre los supercúmulos y el horizonte relativista.

Los cúmulos galácticos son los objetos autogravitacionales más grandes del universo, donde predomina una gran cantidad de gas extraordinariamente caliente, siendo pozos de misteriosa materia oscura. Ha habido un esfuerzo histórico para empezar a dibujar esa estructura, Mesier empezó haciendo un catálogo en 1784 (asignando la letra M casualmente a cada objeto, por ejemplo la galaxia Andrómeda es M31), después en 1888 vino el New General Catálogue (NGC) y posteriormente el Index Catalogue (IC), denominaciones que subsisten hoy en día.

Puede considerarse gracias al Hubble el reconocimiento definitivo (después de varias teorías de tamaño, clasificación y composición, incluidas trampas al solitario de Shapley) de la diferencia de nebulosas intragaláctica (nebulosa) y nebulosa extragaláctica (galaxia), así como las dimensiones reales del Universo. La existencia de la materia oscura (aunque me gusta más llamarla transparente, porque nadie la ve) es clave para entender las grandes estructuras; es una materia que ni emite, ni absorbe, ni dispersa, ni refleja, ni tiene relación alguna con la luz. Se cree que las galaxias son esencialmente materia oscura. Una galaxia es diez veces más grande y masiva de lo que se ve a simple vista, y esto se dedujo del hecho de que rotaban tan rápido, que necesitarían muchísima más masa que la visible, para contrarrestar la gran fuerza centrífuga y mantenerse unidas por autogravitación.

Para situar una galaxia en el Universo se suelen utilizar coordenadas polares (ρ, φ, θ) en 3D, con una coordenada de distancia ρ y dos ángulos φ, θ que nos fijan la dirección en la que se encuentra, de manera que (x = ρ senφ cosθ, y = ρ senφ senθ, z = ρ cosφ). Las dos coordenadas angulares φ, θ son fáciles de calcular, sin embargo, la distancia ρ es más complicada, y se usan muchos métodos dependiendo del tipo de objeto y su lejanía, mediante referencias conocidas, luminosidad, desplazamiento al rojo z, rotación con el efecto Doppler, agitación térmica, espectro, … Las más lejanas detectadas tienen un desplazamiento al rojo z=10 (correspondiente a la aparición de las primeras estrellas, desde hoy hasta la época de reionización).

GRUPO LOCAL DE GALAXIAS

La Vía Láctea forma parte del Grupo Local de galaxias (30-40). La Vía Láctea tiene dos galaxias satélites irregulares muy pequeñas que son las Nubes de Magallanes, y otras enanas como por ejemplo la elíptica de Sagitario, o la del Can Mayor que es la más cercana. La galaxia más grande del Grupo Local es M31-Andrómeda (aunque se le siga llamando nebulosa). El Grupo Local, salvo sus satélites, es prácticamente binario (Andrómeda y Vía Láctea), que se están aproximando chocarán dentro de 2.000 millones de años y tiene un tamaño de 1 Mpc. El choque de galaxias no implica el choque entre sus estrellas, que será poco frecuente. Existe un anillo de galaxias en las que destacan 14 de ellas gigantes como Centaurus-A o Maffei-1, y nuestro Grupo Local está casi en el centro de este grupo. El Concilio de Gigantes es aplanado (1/2 Mpc) y de radio de unos 3 Mpc.

 

Grupo local

CÚMULO DE GALAXIAS

Además de los grupos de galaxias, existen los cúmulos de galaxias, que se caracterizan por tener una gran cantidad de gas intracumular a una temperatura de 108 K, y es 5 o 10 veces más que toda la masa de sus galaxias, y grandes cantidades de materia oscura. Y la masa total es mayor que la del gas M(total)>M(gas)>M(galaxias), la masa total es básicamente materia oscura (5 veces mayor que la masa del gas). El gas está virializado en equilibrio de autogravitación, son los objetos más grandes de este tipo de autogravitación conocidos. Los cúmulos se estudian con diferentes técnicas: visible (galaxias visibles), rayos X (el gas), efecto Sungaev-Zeldovich (fondo cósmico de microondas CMB), emisiones de radio (de galaxias y del medio), lentes gravitacionales (que deforman la luz y permiten ver objetos situados detrás), …

Seguir leyendo

Teoría de la Relatividad General

Albert Einstein publicó la versión definitiva de su teoría de la relatividad general en el número de noviembre de 1915 del Boletín de la Academia de Ciencias de Berlín. La gravedad hasta ese momento Newton la había descrito y se sabía de su existencia, pero no se había formulado una teoría que explicara su auténtica naturaleza. Einstein contó con la ayuda del matemático Marcel Grossman (1878-1936), amigo y compañero de clase de Einstein en Zurich. La dificultad de la relatividad general está en la parte matemática, ya que contiene análisis tensorial y geometría diferencial. La teoría de la relatividad y la mecánica cuántica, son los dos pilares de la física del siglo XX. La Teoría de la Relatividad General es el andamiaje del Cosmos, la estructura del espacio-tiempo, una de las cumbres del pensamiento de la humanidad, que nos hace superarnos como especie, lo más representativo de lo que puede llegar a hacer el género humano.

Un pequeño resumen: Einstein cuando postuló la Relatividad Especial (que es una teoría que no incluía la gravedad, a eso lo llamamos observadores inerciales), y se dió cuenta que chocaba con la teoría de Newton en cosas como que la gravedad era proporcional al cuadrado de la distancia entre dos objetos, y recordemos en la relatividad especial la distancia no es la misma (se expande o se acorta) según quien la mida. Se dió cuenta que necesitaba una teoría de la gravedad para cualquier observador, inercial o no inercial. Por ejemplo, si un paracaidista se pusiera una báscula en el aire pesaría exactamente cero, y si soltara cualquier objeto caería junto a él, como si estuviese en el espacio (inercialmente, como en la Relatividad Especial, por lo tanto las leyes deberían ser las mismas en el espacio como en caída libre, y la gravedad no sería una fuerza, sino otra cosa, que sería la curvatura del espacio-tiempo), esto inspiró el Principio de Equivalencia como nexo entre la relatividad general y especial. Si tenemos dos piedras en las manos y las soltamos, caerían paralelas y llegarían al mismo tiempo, pero si pudiesen seguir cayendo se juntarían en el centro de la Tierra (qué les impide seguir cayendo paralelas??, eso sólo sucede en una geometría curva, como sucede también con los meridianos -geodésicas- que se cortan en los polos). La gravedad será la caida natural en ausencia de fuerzas en un espacio curvo (imaginemos una gota de agua dentro de en un embudo cómo caería). Ese espacio-tiempo curvo es el que genera la fuerza de la gravedad. La gravedad que sentimos bajo nuestros pies, es la fuerza de frenado que hace el suelo e impide que caigamos al centro de la Tierra. Es decir «la materia le dice al espacio como curvarse, el espacio le dice a la materia como moverse», J. Wheeler.

En definitiva, la ecuación de Einstein relaciona la cantidad de materia y energía en un lugar determinado, con la curvatura del espacio-tiempo. Einstein tenía esta idea, pero desconocía las matematicas necesarias para escribir su teoría, y recurrió a su amigo Grossmann que a su vez recurrió a las matemáticas hechas 50 años antes por Riemann. Una geometría sobre un espacio-tiempo curvo (eso en matemáticas está dentro de la geometría diferencial). Entenderemos fenómenos como los de la película Interstellar donde una hora en un planeta es como 7 años en la Tierra, debido a la presencia del campo gravitatorio enorme de un agujero negro cercano (la gravedad no sólo influye en el espacio, también en el tiempo). Cualquier cosa con peso o energía gravita, y eso incluye a la luz, de hecho cuando abandona un cuerpo muy masivo pierde energía (desplazamiento al rojo) al converitrse en una onda de menor frecuencia, y al contrario. El tejido espacio tiempo es flexible y puede propagar ondas de gravedad a la velocidad de la luz. La presión también pesa (masa-energía), y puede ser positiva o negativa (como la expansión del universo en el big-bang, era gravedad de repulsión). Los agujeros de gusano también son productos de las ecuaciones. Antes de Einstein el concepto de Universo era reducido e inmovil, la cosmología tiene un gran desarrollo gracias a su teoría, ideas como el big-bang, la inflación, multiversos, la teoría de cuerdas, ….. se apoyan en sus ecuaciones. Todavía no se han llegado a completar todas sus consecuencias, ni se ha integrado con la teoría cuántica (¿encontraremos el «gravitón»?) para hacer una teoría aún más general del todo.

El Principio de la Relatividad (formulación de Galilei 1564-1642) es mucho más antiguo que la Teoría de la Relatividad, incluso más antiguo que la mecánica clásica de Newton, fue formulado por Galileo Galilei, como un argumento en la discusión del heliocentrismo versus el geocentrismo. Los defensores del geocentrismo creían en Aristóteles y Ptolomeo, argumentaban que, si la Tierra se moviera alrededor del Sol y alrededor de su eje, ¿por qué no lo notamos?, ¿por qué una bola que dejamos caer desde una torre alta termina al pie de la torre y no a cierta distancia hacia el Oeste, debido a la supuesta rotación de la Tierra de Oeste a Este?. Como respuesta a este argumento Galilei introdujo una nueva idea: la inercia; había llegado a la conclusión de que una masa en movimiento uniforme rectilíneo mantendrá eternamente este movimiento mientras que no actúe ninguna fuerza exterior sobre ella. Galilei dijo que si dejamos caer una bola desde la gavia de un barco en movimiento (uniforme), la bola tocará la cubierta en el pie del mástil y no más hacia la popa, puesto que la bola conserva la velocidad uniforme del barco durante su caída. La conclusión que sacó Galilei es que un observador no es capaz de determinar si él está en un sistema que está en reposo o en movimiento uniforme y Seguir leyendo

Universo a gran escala, su evolución (I): homogéneo, isótropo y plano.

El universo a gran escala accesible tiene un radio de 14.000 millones de años luz, es el horizonte relativista, una superficie esférica cuyo radio aumenta a la velocidad de la luz, lo que está más allá no es observable y está desconectado casualmente de nosotros (con una parte interna o casual, y otra externa que no tiene influencia sobre nosotros). Su descripción cosmológica actual nos dice que el Universo es homogéneo, isótropo y su curvatura relativista es cero; es decir, es plano. En cuanto a su composición, actualmente se cree que aproximadamente más de 2/3 partes son energía oscura (68,3%), algo más de 1/4 parte es materia oscura (26,8%) y el resto (4,9%) es la materia visible ordinaria que conocemos (materia bariónica). De la materia bariónica, casi todo es hidrógeno, helio en menor proporción y el resto de elementos químicos son minoritarios. A gran escala las galaxias son las moléculas del fluido del universo.

a

Los cúmulos de galaxias son la mayor entidad que se mantiene unida por autogravitación, son observables en todas las longitudes de onda y con múltiples herramientas. Nuestra Vía Láctea forma parte de un grupo de una decena de galaxias llamado Grupo Local con dos galaxias dominantes que son la Vía Láctea y Andrómeda (M31). El Grupo Local es una extensión del Cúmulo de Virgo, rico en galaxias. Los cúmulos se agrupan en supercúmulos (estructuras de filamentos de unos entre 50 a 1000 Megaparsec – Mpc- (donde 1 Mpc es aproximadamente 3 millones de años luz), el nuestro se llama Laniakea. Existe cierta periodicidad en la distribución de los filamentos, casi como una red cristalina.

b

Decir que el universo es homogéneo significa que en todos los lugares es igual en densidad, presión, temperatura, composición química, curvatura espacial,… Que es isotrópico significa que estemos donde estemos en el universo, vemos lo mismo en todas las direcciones donde miremos, todos los puntos son un Seguir leyendo