Universo a gran escala, su evolución (II): Grandes Estructuras.

 

Entre las preguntas que nos hacemos del Universo, los ¿por qué?: de cómo se expande, o porque es homogéneo e isotrópico como vimos en la Primera Parte, su historia, que haya vida, su composición físico-química o cómo se expande; una de ellas es su estructura a gran escala, entendiendo que la estructura a gran escala está entre los supercúmulos y el horizonte relativista.

Los cúmulos galácticos son los objetos autogravitacionales más grandes del universo, donde predomina una gran cantidad de gas extraordinariamente caliente, siendo pozos de misteriosa materia oscura. Ha habido un esfuerzo histórico para empezar a dibujar esa estructura, Mesier empezó haciendo un catálogo en 1784 (asignando la letra M casualmente a cada objeto, por ejemplo la galaxia Andrómeda es M31), después en 1888 vino el New General Catálogue (NGC) y posteriormente el Index Catalogue (IC), denominaciones que subsisten hoy en día.

Puede considerarse gracias al Hubble el reconocimiento definitivo (después de varias teorías de tamaño, clasificación y composición, incluidas trampas al solitario de Shapley) de la diferencia de nebulosas intragaláctica (nebulosa) y nebulosa extragaláctica (galaxia), así como las dimensiones reales del Universo. La existencia de la materia oscura (aunque me gusta más llamarla transparente, porque nadie la ve) es clave para entender las grandes estructuras; es una materia que ni emite, ni absorbe, ni dispersa, ni refleja, ni tiene relación alguna con la luz. Se cree que las galaxias son esencialmente materia oscura. Una galaxia es diez veces más grande y masiva de lo que se ve a simple vista, y esto se dedujo del hecho de que rotaban tan rápido, que necesitarían muchísima más masa que la visible, para contrarrestar la gran fuerza centrífuga y mantenerse unidas por autogravitación.

Para situar una galaxia en el Universo se suelen utilizar coordenadas polares (ρ, φ, θ) en 3D, con una coordenada de distancia ρ y dos ángulos φ, θ que nos fijan la dirección en la que se encuentra, de manera que (x = ρ senφ cosθ, y = ρ senφ senθ, z = ρ cosφ). Las dos coordenadas angulares φ, θ son fáciles de calcular, sin embargo, la distancia ρ es más complicada, y se usan muchos métodos dependiendo del tipo de objeto y su lejanía, mediante referencias conocidas, luminosidad, desplazamiento al rojo z, rotación con el efecto Doppler, agitación térmica, espectro, … Las más lejanas detectadas tienen un desplazamiento al rojo z=10 (correspondiente a la aparición de las primeras estrellas, desde hoy hasta la época de reionización).

GRUPO LOCAL DE GALAXIAS

La Vía Láctea forma parte del Grupo Local de galaxias (30-40). La Vía Láctea tiene dos galaxias satélites irregulares muy pequeñas que son las Nubes de Magallanes, y otras enanas como por ejemplo la elíptica de Sagitario, o la del Can Mayor que es la más cercana. La galaxia más grande del Grupo Local es M31-Andrómeda (aunque se le siga llamando nebulosa). El Grupo Local, salvo sus satélites, es prácticamente binario (Andrómeda y Vía Láctea), que se están aproximando chocarán dentro de 2.000 millones de años y tiene un tamaño de 1 Mpc. El choque de galaxias no implica el choque entre sus estrellas, que será poco frecuente. Existe un anillo de galaxias en las que destacan 14 de ellas gigantes como Centaurus-A o Maffei-1, y nuestro Grupo Local está casi en el centro de este grupo. El Concilio de Gigantes es aplanado (1/2 Mpc) y de radio de unos 3 Mpc.

 

Grupo local

CÚMULO DE GALAXIAS

Además de los grupos de galaxias, existen los cúmulos de galaxias, que se caracterizan por tener una gran cantidad de gas intracumular a una temperatura de 108 K, y es 5 o 10 veces más que toda la masa de sus galaxias, y grandes cantidades de materia oscura. Y la masa total es mayor que la del gas M(total)>M(gas)>M(galaxias), la masa total es básicamente materia oscura (5 veces mayor que la masa del gas). El gas está virializado en equilibrio de autogravitación, son los objetos más grandes de este tipo de autogravitación conocidos. Los cúmulos se estudian con diferentes técnicas: visible (galaxias visibles), rayos X (el gas), efecto Sungaev-Zeldovich (fondo cósmico de microondas CMB), emisiones de radio (de galaxias y del medio), lentes gravitacionales (que deforman la luz y permiten ver objetos situados detrás), …

Seguir leyendo

Teoría de la Relatividad General

Albert Einstein publicó la versión definitiva de su teoría de la relatividad general en el número de noviembre de 1915 del Boletín de la Academia de Ciencias de Berlín. La gravedad hasta ese momento Newton la había descrito y se sabía de su existencia, pero no se había formulado una teoría que explicara su auténtica naturaleza. Einstein contó con la ayuda del matemático Marcel Grossman (1878-1936), amigo y compañero de clase de Einstein en Zurich. La dificultad de la relatividad general está en la parte matemática, ya que contiene análisis tensorial y geometría diferencial. La teoría de la relatividad y la mecánica cuántica, son los dos pilares de la física del siglo XX. La Teoría de la Relatividad General es el andamiaje del Cosmos, la estructura del espacio-tiempo, una de las cumbres del pensamiento de la humanidad, que nos hace superarnos como especie, lo más representativo de lo que puede llegar a hacer el género humano.

Un pequeño resumen: Einstein cuando postuló la Relatividad Especial (que es una teoría que no incluía la gravedad, a eso lo llamamos observadores inerciales), y se dió cuenta que chocaba con la teoría de Newton en cosas como que la gravedad era proporcional al cuadrado de la distancia entre dos objetos, y recordemos en la relatividad especial la distancia no es la misma (se expande o se acorta) según quien la mida. Se dió cuenta que necesitaba una teoría de la gravedad para cualquier observador, inercial o no inercial. Por ejemplo, si un paracaidista se pusiera una báscula en el aire pesaría exactamente cero, y si soltara cualquier objeto caería junto a él, como si estuviese en el espacio (inercialmente, como en la Relatividad Especial, por lo tanto las leyes deberían ser las mismas en el espacio como en caída libre, y la gravedad no sería una fuerza, sino otra cosa, que sería la curvatura del espacio-tiempo), esto inspiró el Principio de Equivalencia como nexo entre la relatividad general y especial. Si tenemos dos piedras en las manos y las soltamos, caerían paralelas y llegarían al mismo tiempo, pero si pudiesen seguir cayendo se juntarían en el centro de la Tierra (qué les impide seguir cayendo paralelas??, eso sólo sucede en una geometría curva, como sucede también con los meridianos -geodésicas- que se cortan en los polos). La gravedad será la caida natural en ausencia de fuerzas en un espacio curvo (imaginemos una gota de agua dentro de en un embudo cómo caería). Ese espacio-tiempo curvo es el que genera la fuerza de la gravedad. La gravedad que sentimos bajo nuestros pies, es la fuerza de frenado que hace el suelo e impide que caigamos al centro de la Tierra. Es decir «la materia le dice al espacio como curvarse, el espacio le dice a la materia como moverse», J. Wheeler.

En definitiva, la ecuación de Einstein relaciona la cantidad de materia y energía en un lugar determinado, con la curvatura del espacio-tiempo. Einstein tenía esta idea, pero desconocía las matematicas necesarias para escribir su teoría, y recurrió a su amigo Grossmann que a su vez recurrió a las matemáticas hechas 50 años antes por Riemann. Una geometría sobre un espacio-tiempo curvo (eso en matemáticas está dentro de la geometría diferencial). Entenderemos fenómenos como los de la película Interstellar donde una hora en un planeta es como 7 años en la Tierra, debido a la presencia del campo gravitatorio enorme de un agujero negro cercano (la gravedad no sólo influye en el espacio, también en el tiempo). Cualquier cosa con peso o energía gravita, y eso incluye a la luz, de hecho cuando abandona un cuerpo muy masivo pierde energía (desplazamiento al rojo) al converitrse en una onda de menor frecuencia, y al contrario. El tejido espacio tiempo es flexible y puede propagar ondas de gravedad a la velocidad de la luz. La presión también pesa (masa-energía), y puede ser positiva o negativa (como la expansión del universo en el big-bang, era gravedad de repulsión). Los agujeros de gusano también son productos de las ecuaciones. Antes de Einstein el concepto de Universo era reducido e inmovil, la cosmología tiene un gran desarrollo gracias a su teoría, ideas como el big-bang, la inflación, multiversos, la teoría de cuerdas, ….. se apoyan en sus ecuaciones. Todavía no se han llegado a completar todas sus consecuencias, ni se ha integrado con la teoría cuántica (¿encontraremos el «gravitón»?) para hacer una teoría aún más general del todo.

El Principio de la Relatividad (formulación de Galilei 1564-1642) es mucho más antiguo que la Teoría de la Relatividad, incluso más antiguo que la mecánica clásica de Newton, fue formulado por Galileo Galilei, como un argumento en la discusión del heliocentrismo versus el geocentrismo. Los defensores del geocentrismo creían en Aristóteles y Ptolomeo, argumentaban que, si la Tierra se moviera alrededor del Sol y alrededor de su eje, ¿por qué no lo notamos?, ¿por qué una bola que dejamos caer desde una torre alta termina al pie de la torre y no a cierta distancia hacia el Oeste, debido a la supuesta rotación de la Tierra de Oeste a Este?. Como respuesta a este argumento Galilei introdujo una nueva idea: la inercia; había llegado a la conclusión de que una masa en movimiento uniforme rectilíneo mantendrá eternamente este movimiento mientras que no actúe ninguna fuerza exterior sobre ella. Galilei dijo que si dejamos caer una bola desde la gavia de un barco en movimiento (uniforme), la bola tocará la cubierta en el pie del mástil y no más hacia la popa, puesto que la bola conserva la velocidad uniforme del barco durante su caída. La conclusión que sacó Galilei es que un observador no es capaz de determinar si él está en un sistema que está en reposo o en movimiento uniforme y Seguir leyendo

Viajes en el tiempo.

A raíz de una serie de éxito hemos hablado sobre ciertos conceptos físicos de nuestro universo. Como se trata de poder explicar teorías físicas, que incluso para físic@s y matemátic@s, son muy duras de entender. Vamos a tratar de explicar estos conceptos de una manera intuitiva, para que se pueda vislumbrar un poquiiiitooo de su complejo significado. Siendo conscientes, que conceptos de la física cuántica, teoría de la relatividad general, topología algebraica,.. etc, no son plato para todos los públicos. Pero empecemos por el principio. Nuestro universo surgió hace aproximadamente hace 14.000 millones de años en el Big Bang, a partir de ese momento surge el tiempo, el espacio, con su materia, energía y las leyes físicas que lo gobiernan. A quienes nos pregunten ¿que había antes del Big Bang? (argumento cosmológico) podemos a su vez preguntarle ¿qué hay dentro de nuestro planeta, al norte del polo norte de la Tierra?, que es una pregunta igual de absurda; porque antes del Big Bang ¡¡no existían!! ni el espacio y mucho más importante no existía el tiempo, por tanto antes del Big Bang no había ni un antes, ni un después.

Crees que es difícil viajar en el tiempo?? Es muy sencillo viajar al futuro, simplemente basta sentarse en una silla sin moverse durante un rato, y ya está!!! Desde que empezaste a leer esto, ya has viajado en el tiempo. Pero hablando en serio, para hacer lo que estamos pensando, necesitamos saber mucha más física y matemáticas para saber cómo es posible?. Pero parece ser que viajar al futuro es más fácil, que viajar al pasado. Todavía no se ha completado el modelo físico de partículas, se sigue investigando y aparecen nuevas partículas elementales aún, como el bossón de Higgs, Una vez que la teoría de cuerdas quedó en vía muerta como teoría del Todo, parece ser que últimamente hay más avances en la teoría cuántica de campos. Pero las sucesivas confirmaciones de las predicciones físicas en el CERN en los experimentos con el acelerador de partículas (se han llegado a acelerar partículas casi al 99,95% de la velocidad de la luz), hace que todavía no se haya dicho su última palabra. Esperamos ansiosos con nuevos descubrimientos, que permitan conocer mejor el universo. Lo cierto es que no hay ninguna ley física que impida viajar en el tiempo, por ahora, aunque no sepamos cómo, ni en qué condiciones, y que actualmente no es posible.

Quienes hablan de conceptos como «el ciclo unisolar cada 33 años» podemos decir que es una chorrada sin ninguna base científica, simplemente acordándonos de la segunda ley de la termodinámica que hace que la entropía aumente el desorden del universo, y nos ayude a distinguir la fecha del tiempo distinguiendo entre presente y pasado. Aunque la Luna se sincronizara con la Tierra cada 33 años, no es así el movimiento de nuestro Sol en la Vía Láctea; ni la Vía Láctea que colisionará con Andrómeda y no lo harán en 33 años (pero no te preocupes, sucederá dentro de 4.500 millones de años, día arriba, día abajo). Tampoco se sabe a ciencia cierta cual será la evolución del universo y su final, si terminará comprimiéndose (es uno de los posibles finales teóricos), lo que si se sabe es que se está expandiendo, y cada vez más aceleradamente (Ley de Hubble-Lemaître).

Tampoco existe el determinismo en nuestro universo, puesto que la mecánica cuántica funciona de Seguir leyendo

La Luz, ondas electromagnéticas y relatividad.

Preguntarse ¿qué es la luz?, nos lleva a respuestas muy potentes y preguntas aún no resueltas tecnológica e intelectualmente. Lo primero impactante es que al mirar a las estrellas, la luz que salió de allí, es mirar a su pasado. El universo es tan grande, que la luz que viaja a la máxima velocidad tarda miles e incluso millones de años en recorrerlo. A poca distancia la luz es prácticamente instantanea, sin embargo tarda 8 minutos desde el Sol a la Tierra. La luz es lo más rápido de nuestro universo debido a que el fotón (la partícula que la transporta) no tiene masa (es sólo energía), su velocidad en el vacío es c=299.792,458m/sg, aunque se redondea a c=300.000.000m/sg. Los electrones orbitan en distintos niveles energéticos alrededor del núcleo del átomo, la luz visible se forma cuando un electrón que está en estado excitado pasa a una órbita inferior perdiendo energía y emitiendo un fotón (al contrario, un electron puede pasar a un nivel superior absorbiendo la energía), una partícula sin masa que transporta la luz (es una partícula fundamental del modelo de física de partículas). El fotón transporta la fuerza electromagnética. Las ondas electromagnéticas transmiten energía, y estan producidas por la vibración de las partículas cargadas y viajan a través del espacio a la velocidad de la luz. Esa velocidad se ve influida por el medio donde se propaga, porque a nivel subatómico los fotones son capturados y emitidos, incluso en el vacío, donde aparecen espontaneamente partículas y antipartículas. Incluso, y esto es muy sorprendente, el propio universo se está expandiendo a velocidades superiores a la de la luz (y no contradice nada, pero eso lo contaremos en otro momento, es como si el universo conspirara para que no veamos la luz del Big Bang, que está detrás de la radiación de fondo de microondas). La luz conforme viaja por el espacio va perdiendo energía, y con esa expansión llegará un momento que no exista contacto visual con parte del universo observable actual.

La luz es la forma más pequeña de energía que puede ser transportada, es una onda electromagnética (EM). El fotón no puede ser dividido, posee Seguir leyendo

Universo a gran escala, su evolución (I): homogéneo, isótropo y plano.

El universo a gran escala accesible tiene un radio de 14.000 millones de años luz, es el horizonte relativista, una superficie esférica cuyo radio aumenta a la velocidad de la luz, lo que está más allá no es observable y está desconectado casualmente de nosotros (con una parte interna o casual, y otra externa que no tiene influencia sobre nosotros). Su descripción cosmológica actual nos dice que el Universo es homogéneo, isótropo y su curvatura relativista es cero; es decir, es plano. En cuanto a su composición, actualmente se cree que aproximadamente más de 2/3 partes son energía oscura (68,3%), algo más de 1/4 parte es materia oscura (26,8%) y el resto (4,9%) es la materia visible ordinaria que conocemos (materia bariónica). De la materia bariónica, casi todo es hidrógeno, helio en menor proporción y el resto de elementos químicos son minoritarios. A gran escala las galaxias son las moléculas del fluido del universo.

a

Los cúmulos de galaxias son la mayor entidad que se mantiene unida por autogravitación, son observables en todas las longitudes de onda y con múltiples herramientas. Nuestra Vía Láctea forma parte de un grupo de una decena de galaxias llamado Grupo Local con dos galaxias dominantes que son la Vía Láctea y Andrómeda (M31). El Grupo Local es una extensión del Cúmulo de Virgo, rico en galaxias. Los cúmulos se agrupan en supercúmulos (estructuras de filamentos de unos entre 50 a 1000 Megaparsec – Mpc- (donde 1 Mpc es aproximadamente 3 millones de años luz), el nuestro se llama Laniakea. Existe cierta periodicidad en la distribución de los filamentos, casi como una red cristalina.

b

Decir que el universo es homogéneo significa que en todos los lugares es igual en densidad, presión, temperatura, composición química, curvatura espacial,… Que es isotrópico significa que estemos donde estemos en el universo, vemos lo mismo en todas las direcciones donde miremos, todos los puntos son un Seguir leyendo

El Muro galáctico.

Nuestra galaxia la Vía Láctea (The Milky Way), con todo lo enorme que es, forma parte de un grupo de 54 galaxias que ocupan un espacio de 10 millones de años luz, que se llama Grupo Local. Y el centro de gravedad de todas ellas está precisamente entre nuestra galaxia y Andrómeda, que chocarán entre sí dentro de 4.000 millones de años, porque se acercan una a otra a una velocidad de 110 kilómetros por segundo. Pero eso no es todo, porque este Grupo Local está unido gravitacionalmente a un cúmulo mayor de unas 1.500 galaxias que se llama Cúmulo de Virgo.

via lactea Seguir leyendo

La Teoría Cuántica de Bucles (LQT).

Se trata de una teoría de campos que trata de ser válida para la gravedad, que podría aportar a ser una Teoría del Todo. En este post sólo voy a dar una visión superficial para situar esta teoría, para dar una visión intuitiva comprensible para los más profanos y más adelante profundizaremos un poco más. Esta Teoría Cuantica de Bucles (LQT, Loop Quantum Theory) supone que el espacio tiene una estructura granular, en lugar de la visión espacio-tiempo de Einstein continua. Esta teoría supone que existen escalas mínimas de tamaño, a partir del cual el espacio sería discreto. Esta teoría surge de los trabajos de A. Ashtekar que reformulaba las ecuaciones de la Teoría de la Relatividad General y utilizadas por Rovelli y Smolin para crear la teoría cuántica de la gravedad.

bigbounce Seguir leyendo

Relación entre Relojes atómicos, Navegadores GPS y Teoría de la Relatividad.

Einstein en su teoría de la Relatividad Especial, utilizando las transformaciones de Lorentz, postuló:

  1. Que las leyes de la física son iguales para todos los observadores inerciales (no acelerados).
  2. La velocidad de la luz en el vacío es siempre la misma, con independencia de la velocidad de la fuente de la luz con respecto al espectador.

1 Seguir leyendo

Ondas Gravitacionales: avance histórico confirmando su existencia.

Las Ondas Gravitacionales fueron postuladas ya por Albert Einstein en su teoría de la Relatividad General hace ahora 100 años. Según la Teoría General de la Relatividad hay objetos que al viajar por el espacio convierten parte de su masa en energía y la desprenden en forma de ondas que viajan a la velocidad de la luz y deforman a su paso el espacio y el tiempo; y crean estas ondas lo mismo que la estela de un barco al moverse o las de una piedra al caer en un estanque.

1 Seguir leyendo

Agujeros Negros.

Imagina condensar toda la tierra en una canica de 2cm de diámetro. Las estrellas en su proceso de fusión sintetizan elementos cada vez más pesados. En el desenlace las capas más externas son expulsadas mientras en el interior se hunde sobre sí misma. Sabemos que la gravedad es una deformación del espacio-tiempo provocada por la masa. Si nos adentráramos en un agujero negro, para un obsevador externo cada minuto nuestro serían años o siglos para él. Los agujeros negros tienen una frontera límite que si no sobrepasamos podríamos escapar de su atracción, esa frontera se llama: horizonte de sucesos, que es el punto sin retorno. A partir de ese horizonte de sucesos de un agujero negro no puede escapar ni la luz, engullen estrellas, planetas,…. Por eso es imposible ver lo que suscede en su interior, nada sale, ni la luz. Se ha especulado sobre la idea de que son agujeros de gusano que conectan puntos distintos del universo o universos diferentes. Se han detectado múltiples de ellos como el Cygnus X-1, o el del centro de la galaxia M87, de hecho todas las galaxias contienen en su núcleo un agujero supermasivo.

Seguir leyendo

Paradoja de Fermi (II): No detectar otras civilizaciones no significa que no existan.

Recordemos post anteriores donde vimos la teoría de civilizaciones posibles que podrían existir en el universo. En el post anterior vimos la alta probabilidad de existencia de planetas tipo tierra donde pudiese desarrollarse la vida, incluso millones de años antes que la nuestra. Según las hipótesis que manejan los científicos que trabajan en este tema, si estas civilizaciones no se han destruido, y pueden tener hasta millones  de años antes que nosotros, deberían haber desarrollado unas tecnologías capaces de poseer señales detectables de su existencia. Con lo cual llegamos a la Paradoja de Fermi: ¿entonces donde están que no los vemos?

Seguir leyendo

Paradoja de Fermi (I): Teoría del Gran Filtro. Nuestra supervivencia como especie.

En este post explicaremos porque si existen posibilidades de existencia de civilizaciones  según la escala de , tipo I (que dominan su planeta), tipo II (que dominan su sistema solar) y tipo III (que dominan su galaxia), no tenemos noticias de ninguna de ellas y esto es una magnífica noticia. Este primera parte se basa en una de las teoría que explicaría la falta de noticias.

Pero «Si existen miles de millones de posibilidades de que haya civilizaciones inteligentes, ¿por qué ninguna ha contactado todavía con nosotros?«. La paradoja de Fermi entonces diría, teniendo en cuenta lo anterior: ¿dónde está todo el mundo?

desconocido

Seguir leyendo

Tipos posibles de civilizaciones: Escala de Kardashov

Aunque hay quien ha argumentado que no podemos entender a las civilizaciones avanzadas y por lo tanto, no podemos predecir su comportamiento. A la hora de plantearnos qué futuro tenemos como civilización dentro de un universo prácticamente desconocido y del que, a día de hoy, no tenemos noticias de ninguna otra, aunque si estamos descubriendo planetas en los cuales eventualmente podrían tener condiciones para desarrollar algún tipo de vida.

Spacecolony3edit.jpeg Seguir leyendo

Principio antrópico, la energía oscura y los multiversos.

El principio antrópico es una verdad incontestable, y dice que «los seres vivos sólo pueden sobrevivir en entornos físicos aptos para la vida», bien de manera natural o creándolos artificialmente. De esta obviedad se pueden, sin embargo, sacar conclusiones muy importantes. En la Vía Láctea existen cientos de miles de millones de planetas, donde sólo una pequeña parte se dan las condiciones físicas de gravedad, temperatura, atmósfera,… para la aparición de la vida. Sólo en esos planetas puede surgir la vida y si además es inteligente, podrán observar su entorno. Y observarán un planeta con las condiciones para albergar vida (igual que nosotros en la Tierra), mientras la inmensa mayoría del resto de planetas son incompatibles con la vida.

Energia Oscura (6) Seguir leyendo

La materia oscura: ¿cómo la descubrieron?

Hoy sabemos que toda la materia que podemos observar y ver es sólo un 15% de la materia que existe en el universo. El otro 85% es una materia que no conocemos, sólo sabemos que existe y se llama: materia oscura. Aunque ya escribí un post sobre este tema, en este post nos centraremos en cómo se descubrió.

via lactea Seguir leyendo